UP | HOME

Notation

Table of Contents

The notation used throughout this book is summarized below.

1 Numbers

  • \(x\): A scalar
  • \(\mathbf{x}\): A vector
  • \(\mathbf{X}\): A matrix
  • \(\mathsf{X}\): A tensor
  • \(\mathbf{I}\): An identity matrix
  • \(x_i\), \([\mathbf{x}]_i\): The \(i^\mathrm{th}\) element of vector \(\mathbf{x}\)
  • \(x_{ij}\), \([\mathbf{X}]_{ij}\): The element of matrix \(\mathbf{X}\) at row \(i\) and column \(j\)

2 Set Theory

  • \(\mathcal{X}\): A set
  • \(\mathbb{Z}\): The set of integers
  • \(\mathbb{R}\): The set of real numbers
  • \(\mathbb{R}^n\): The set of $n$-dimensional vectors of real numbers
  • \(\mathbb{R}^{a\times b}\): The set of matrices of real numbers with \(a\) rows and \(b\) columns
  • \(\mathcal{A}\cup\mathcal{B}\): Union of sets \(\mathcal{A}\) and \(\mathcal{B}\)
  • \(\mathcal{A}\cap\mathcal{B}\): Intersection of sets \(\mathcal{A}\) and \(\mathcal{B}\)
  • \(\mathcal{A}\setminus\mathcal{B}\): Subtraction of set \(\mathcal{B}\) from set \(\mathcal{A}\)

3 Functions and Operators

  • \(f(\cdot)\): A function
  • \(\log(\cdot)\): The natural logarithm
  • \(\exp(\cdot)\): The exponential function
  • \(\mathbf{1}_\mathcal{X}\): The indicator function
  • \(\mathbf{(\cdot)}^\top\): Transpose of a vector or a matrix
  • \(\mathbf{X}^{-1}\): Inverse of matrix \(\mathbf{X}\)
  • \(\odot\): Hadamard (elementwise) product
  • \([\cdot, \cdot]\): Concatenation
  • \(\lvert \mathcal{X} \rvert\): Cardinality of set \(\mathcal{X}\)
  • \(\|\cdot\|_p\): \(\ell_p\) norm
  • \(\|\cdot\|\): \(\ell_2\) norm
  • \(\langle \mathbf{x}, \mathbf{y} \rangle\): Dot product of vectors \(\mathbf{x}\) and \(\mathbf{y}\)
  • \(\sum\): Series addition
  • \(\prod\): Series multiplication

4 Calculus

  • \(\frac{dy}{dx}\): Derivative of \(y\) with respect to \(x\)
  • \(\frac{\partial y}{\partial x}\): Partial derivative of \(y\) with respect to \(x\)
  • \(\nabla_{\mathbf{x}} y\): Gradient of \(y\) with respect to \(\mathbf{x}\)
  • \(\int_a^b f(x) \;dx\): Definite integral of \(f\) from \(a\) to \(b\) with respect to \(x\)
  • \(\int f(x) \;dx\): Indefinite integral of \(f\) with respect to \(x\)

5 Probability and Information Theory

  • \(P(\cdot)\): Probability distribution
  • \(z \sim P\): Random variable \(z\) has probability distribution \(P\)
  • \(P(X \mid Y)\): Conditional probability of \(X \mid Y\)
  • \(p(x)\): Probability density function
  • \({E}_{x} [f(x)]\): Expectation of \(f\) with respect to \(x\)
  • \(X \perp Y\): Random variables \(X\) and \(Y\) are independent
  • \(X \perp Y \mid Z\): Random variables \(X\) and \(Y\) are conditionally independent given random variable \(Z\)
  • \(\mathrm{Var}(X)\): Variance of random variable \(X\)
  • \(\sigma_X\): Standard deviation of random variable \(X\)
  • \(\mathrm{Cov}(X, Y)\): Covariance of random variables \(X\) and \(Y\)
  • \(\rho(X, Y)\): Correlation of random variables \(X\) and \(Y\)
  • \(H(X)\): Entropy of random variable \(X\)
  • \(D_{\mathrm{KL}}(P\|Q)\): KL-divergence of distributions \(P\) and \(Q\)

6 Complexity

  • \(\mathcal{O}\): Big O notation

Created: 2021-04-11 Sun 20:59